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SUMMARY 

The invisc id   f low  ins ide  and outs ide a moving droplet  i s  analyzed, 
a l lowing   the   shape   to   be   nonspher ica l   subjec t   to   sur face   t ens ion .  
Spec i f i ca l ly ,   t he  Weber number-drag r e l a t ionsh ip  i s  sought which  seems 
t o  assure the   l ea s t   t endency   t o  form a separated wake. Two conditions 
of  continuous  velocity  derivatives  are imposed at the   rear   s tagnat ion  
poin t   for   th i s   purpose .  

The results give.reasonable  changes  of  shape  (flattening) and 
reasonable  but somewhat t o o  low values  of Weber number f o r  minimum wake. 

Even r a t h e r  small departures from spherical   shape  dramatically 
suppress   in te rna l   c i rcu la t ion .  

INTRODUCTION 

There i s  a cont inuing  interest   in   the  f luid  mechanics   of   droplets  
of one f l u i d  moving through a different   f luid.   Perhaps  the  chief   tech-  
nological   reason  for  t h i s  i n t e r e s t  has t o  do wi th  combustion  processes 
involving  the  dispersal   of  one f lu id   i n   ano the r .  The present  study has 
a somewhat general  motivation  in  terms  of  fluid  confinement.  There  are 
many reasons why one  might  wish a flow t o  proceed  in  such a way as t o  
preserve  the  separat ion between two different   f luids .   There are two 
rea l   f l u id   cons ide ra t ions ,  at l e a s t ,  which  must  be  considered i n  such a 
study. First ,  t he re  must be a shape-stabil izing mechanism such as sur- 
face  tension.   Electromagnet ic   pinch  and  rotat ional   iner t ia  may also  be 
e f f ec t ive   i n   t h i s   r e spec t .   I n   t he   p re sen t   s tudy ,  w e  accept  surface 
tension as a prototype  of  such  restraining  influences.  

The second, more mysterious  effect  i s  t h a t  of   viscosi ty .  We must 
assume t h a t  no self  confined  flow  can last forever;  it must ul t imately 
be  destroyed by viscosity,   heat  conduction, and d i f fus ion ,   o r  a combina- 
t ion   o f   these .  This  report   concerns  the most obvious  effect  of 
v i s c o s i t y ,   t h a t  i s ,  the  tendency of the  f low on the  rearward  part  of  an 
objec t   to   separa te   which ,   in   addi t ion   to   p roducing   drag   of   the   ob jec t  as 
a whole,  presumably would contr ibute   to   the  decay  of   the  internal   motions 
of the   d rople t .  

Recent  papers by Winnikow and Chao (Ref. 1) and  Harper  and Moore 
(Ref. 2 )  have  dealt   with  various  aspects  of  droplets at high  Reynolds 
number. In   both  these  papers ,   the   theory  begins   with- the  inviscid  f low 
comprising a Hill's vor tex   ins ide   the   d rople t ,  and a po ten t i a l  flow  out- 
s ide.  The droplet  i s  considered  spherical ,   and  the  theories   proceed  to  
consider  the  viscous  boundary  layer  connecting  these  inner and outer  
flows. 

The most troublesome  aspect  of  these  theories i s  the  treatment  of 
t h e   v i c i n i t y  of  the   rear   s tagnat ion   po in t  where flow  separation.and eddy 
formation,  both  inside  and  outside  the  droplet ,  may o r  may not  occur. 



The v a r i e t y  of p o s s i b i l i t i e s  is indica ted  by the experimental results of 
Winnikow and Chao.  Even i n   t h e  same Reynolds number range  the wake may 
be a very  narrow thread o r  a much wider  region  of  disturbance,  depending, 
i n   e f f e c t ,  on t h e  s i z e  of the  drople t .  It p r o v e s   d i f f i c u l t   t o   s o r t   o u t  
the fac tors   in f luenc ing  wake s i z e .  For  example,  one  might  expect  separa- 
t i o n  t o  depend on Reynolds number (boundary  layer  thickness)  and Weber 
number (degree   o f   f la t ten ing   of   the   d rople t ) .  However, s i n c e   i n   t h e  
experiments,  drag i s  always in   ba lance   wi th   g rav i ty ,  a change  of  droplet 
mass changes  both  Reynolds  and Weber numbers,  and t h e   e f f e c t s   a r e   d i f f i c u l t  
t o   s e p a r a t e .  

In   the   p resent   no te  we consider   inviscid  f low  ( inf ini te   Reynolds  
number),  but  allow  shape t o  change  because  of  surface  tension,  and ask i f  
t h e r e  i s  any Weber number f o r  which the   inv isc id   f low would  be  expected 
t o  have features   associated  with a small or  vanishing wake. 

EQUATIONS OF THE PROBLEM 

We assume  an  axisymmetric  flow i n  which v o r t i c i t y  i s  fu l ly   d i f fused ;  
that  i s ,  in   keeping w i t h  Batchelor's  theorem  (Ref. 31, t h e   v o r t i c i t y  i s  
p ropor t iona l   t o   d i s t ance  from t h e  axis of symmetry wi th in   the   d rople t .  
The d i f fe ren t ia l   equa t ion   for   the   s t ream  func t ion  i s  

cot  e 1 
+ -  

2 Prr -7 Pee = kr2sin20 

where 

A sketch  of  coordinates  appears  in  Fig.  1. Outside t h e  drople t ,  where t h e  
flow i s  i r r o t a t i o n a l ,  Eq. 1 appl ies  with the  r ight-hand  side  omitted 
(k 0 ) .  

The boundary  conditions  used  with  these  equations  are  the  following: 
There i s  a uniform  stream  of  velocity U far from the   d rop le t  

where the  subscr ipt   zero  denotes   f low  quant i t ies   outs ide  the  droplet .  
Subscript  i w i l l  denote   f low  quant i t ies   inside t h e  droplet .   Thus,   the 
spec i f i ca t ion  that  the   d rople t   sur face  i s  a stream  surface  for  both  inner 
and  outer  flows may be wr i t t en  
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where R(8)  defines  the  surface  of  the  droplet .   Finally,   across  the 
droplet   surface,   pressure must balance  surface  tension.  For a given 
shape R ( B ) ,  p ressure   d i f fe rence  due t o  surface  tension would be 

R(2R2+3R'2-RR")sin9 - R'(R2+R12)cos0 
~ ( ~ 2 + ~ 1 2 ) 3 f l s i n e  

If R i s  cons tan t   th i s   formula   reduces   to   the   cor rec t   resu l t ,  namely, 
2/R.  The pressure  difference  obtained from the  Bernoul l i   equat ion,   in-  
cluding buoyancy fo rce ,  would be 

7 

Although w e  assume the   f l ow  to  be  incompressible  inside  and  outside  the 
drople t ,   the   dens i ty  i s  considered  constant i n  both  regions. 

We may note at t h i s   p o i n t   t h a t   t h e  problem i s  not   ye t   fu l ly   de te r -  
mined f o r  a given  droplet  volume and ve loc i ty .   Spec i f ica l ly ,  one may 
say that t h e  v o r t i c i t y   i n s i d e  t h e  droplet  is  not  yet  fixed  because  of 
the   poss ib i l i ty   o f   var ious   d rople t   shapes .   I f   the   d rople t  were spher ica l ,  
the  Bernoulli  constant K would be  determined  immediately  from Eqs.  5 
and 6. In   general ,  however, t he re  must be a r e l a t ionsh ip  between k ,  K 
and  droplet  shape that would admit various  combinations of those 
parameters. 

Presumably t h e  problem is  made determinate  through  the  action  of 
v i scos i ty .  Without a t tempt ing   to   ana lyze   the   v i scous   e f fec ts   assoc ia ted  
with t h e  boundary of t h e  above d rop le t ,   l e t   u s   r equ i r e   t ha t   t he   ve loc i ty  
jump across   the  droplet   surface  have  vanishing  gradient  at t h e   r e a r  
s tagnat ion  point  : 
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This  boundary  condition  presumably makes t h e  problem  unique.  In 
any  droplet   motion,  the  terminal  f low  si tuation must  be p a r t l y   t h e  result 
of some ef fec t   o f   v i scos i ty   involv ing   rec i rcu la t ion   of   vor t ic i ty   wi th in  
the   d rople t .  Eq. 7 ,  i n   e f f e c t ,  minimizes the   t endency   to   f low  separa t ion  
at the  rearward  par t   of   the   droplet .   That  i s ,  a b o u n d q y   l a y e r   i n   t h a t  
region would not  be  needed t o  compensate f o r  a ve loc i ty   d i scont inui ty ,  
and we  know from the  boundary-layer  analysis  of Chao (Ref. 4) t h a t  no 
flow  separation  occurs when t h e r e  is no ve loc i ty  jump i n  the   pure ly  
spherical   case.  

A t  t h i s   p o i n t  we could  proceed to   solve  the  system  of   equat ions and 
boundary  conditions. However, s ince we a re   i n t e re s t ed   i n   f i nd ing   cond i -  
t i o n s   f o r   t h e   l e a s t   e f f e c t   o f   v i s c o s i t y ,  we add  an  additional  boundary 
cond i t ion   t o  the  e f f e c t  that  t h e r e  i s  no surface  gradient  of  shear-stress 
d i scont inui ty  at the   rear   s tagnat ion   po in t .   In   e f fec t ,   the   genera t ion  
o f   v o r t i c i t y  i s  assumed t o  vanish at 8 = 0. The following  condition,  then, 
represents  what would seem t o  be  the  greatest   possible   suppression  of  
viscous  effects   associated  with wake formation: 

l i m  
e-to 

where R i s  the  radius   of   curvature   of  the surface at the   rear   s tagnat ion  
point .  Presumably t h i s   a d d i t i o n a l  boundary  condition w i l l  l e a d   t o  a re- 
l a t ionsh ip  between Weber and Bond numbers, f o r  example, t h a t  would iden t i fy  
condi t ions  for  a minimum wake. 

C 

SOLUTION OF THE  EQUATIONS 

Solutions t o  Eq. 1 may be wri t ten  in   terms  of   spherical   harmonics  
as follows : 

where t h e  P a r e   t h e  Legendre  polynomials.  Inside  the  droplet  terms 
s ingular  at the   o r ig in  have  been  dropped,  while  outside,  terms  singular 
at i n f i n i t y  have  been  dropped. For convenience,  the  following  defini- 
t i o n s   a r e  made : 

n 
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a - A R  /U n-1 
n n l  

c E CnRl -n-2/U n 

/4a 

Parenthe t ica l ly ,  w e  may no te   t ha t  Hill's spher ica l   vor tex  i s  a 
pa r t i cu la r   ca se   o f  Eq. 9,  where 

and the   o ther   coef f ic ien ts   vanish .  We may obta in  a simple  approximate 
so lu t ion  by t runca t ing   t he  series of Eqs. 9 and 1 0 ,  keeping  only t h e  first 
th ree  terms o f   t he  sums. Correspondingly, we apply  boundary  conditions 
at only three po in t s  -- the  rear s tagnat ion   po in t ,  t h e  shoulder ( 0  = a / 2 ) ,  
and the  forward  stagnation  point.  We assume an  interpolat ion  formula  for  
radius  of t h e  drople t ,   quadra t ic   in  P, designed to   pass   th rough the  t h r e e  
points   def ining the  shape  of t h e  droplet .  R2 and R may be  regarded as 
unknown, whi le  R1, i n   e f f e c t ,  i s  used to   de f ine   t he   s i ze   o f   t he   d rop le t .  3 

R = R2 + 1/2(R -R )U + 1/2(R1-2R2 + R 3 ) p 2  1 3  (13) 

Before  proceeding l e t  us  count unknowns and equations.  Three A ' s ,  
t h r e e  C I S ,  and  two radii account  for  eight unknowns. K ( the   l eve l   o f  
v o r t i c i t y ) ,  K ( the  Bernoul l i   constant   or   pressurizat ion  of   the  droplet)  
and Weber  number ( W )  add th ree   add i t iona l  unknowns f o r  a t o t a l   o f  11. 
Turning t o   t h e   b o ~ d a r y   c o n d i t i o n s ,   r e q u i r i n g   p o i n t s  1, 2 and 3 t o  be on 
stream surfaces  of  both  inner and outer   f lows  yieldssix  condi t ions.  The 
balance  of  pressure  and  surface  tension at those   th ree   po in ts ,   toge ther  
w i t h  t h e  two spec ia l   condi t ions  a t  t h e  rear s tagnat ion   po in t ,   g ive  a 
t o t a l   o f  11 equations,  which should   suf f ice   to   de te rmine  t h e  11 unknowns. 
We may write down the  results of  applying  the first eight  boundary  condi- 
t ions as follows. The  "Bond  number" B i s  a parameter  of the problem. 

R1+R3 +"- R 3 
R 2 

R2 - - - 4  3 B  R1+R3 R1-R3 
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1111 I 111111 111111111 II 

R2 R3 
R1 R1 

K = kB+1+2- - 

R -R 
a = -  3 a  
2 3R3 1 

2R12 
a = -  
3 2 "1 

3R2 

R15-R3 5 

R12-R3 2 
- -  
R -R 1 C 
1 3  

c3 = - -(1+2c1+6c2) 12 1 

R- 2 

K = 2a1(1+4-$+ I 6a2 
R2 

We  then  apply Eq. 7 and  find 

R 
a = - -(z 3 - 2cl + 3c2) 1 R1+R3 2 

In this  set of equations,  one  may  say  that  only  one  quantity,  say 
R3,  remains  unknown.  Only two conditions  remain:  The  pressure-surface 
tension  balance  at  the  shoulder  of  the  droplet  yields 
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2R2 2 +3/4(R1-R3) 2 -R2(R1-2R +R ) 
4 w = I- 

2 3/2 3 1 x  
R1+R3 LR2 2+1/4 ( R , - R ~ )  I 

(16 1 

and f ina l ly   t he   cond i t ion   o f  Eq. 8 closes  the  system: 

*2a1(4- R1 g-) + 3a2(7-3r)1 R1 = ~(3+~-) 5 R1 + 2 ~ ~ ( 6 + ~ - )  R1 + 3 c 2 ( 7 + r )  R1 (17) 
C C C C C 

Based on Eq. 13, the   rad ius  R may be  writ ten as 
C 

" R1 5 R2 

Rc R1 R1 

R 
- - - 2- + 1/2- 3 

RESULTS AND DISCUSSION 

The solution  of  the  foregoing  system  of  algebraic  equations was 
obtained on a high-speed  computing  machine for   the  l iquid  combinat ions 
fea tured   in   Ref .  1. Results  have  been  calculated  in  terms  of  an  equiva- 
lent   drop radius , t h a t  i s ,  the  radius   of   the   sphere t h a t  would have t h e  
same volume as the  drop. 

Bond and Weber numbers are  then  expressed  in  terms  of t h i s  equivalent ' 

rad ius  : 

Re 2 Re 

R1 R1 
B' Z (-) ; W' E W- 
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and w e  ca l cu la t e  a drag coef f ic ien t   based   on   the   equiva len t   f ron ta l  area 
of t h e   d r o p l e t .  

c :  D 

1/2pU2aRe2 

and assume t h a t   t h e   d r a g  i s  tha t   necessary   to   ba lance   nega t ive  buoyancy. 

Thus, t he   d rag   coe f f i c i en t  i s  a r a t i o   o f  Bond t o  Weber numbers,.  and  perhaps, 
more properly,   should  be  cal led a Froude number. 

16 B' 
'D 3 W' 

-" - (23)  

It should  be  obvious that t h e   d r a g   c o e f f i c i e n t   c a l c u l a t e d   i n   t h i s  way i s  
not   necessar i ly  that which w i l l  a c tua l ly  be  produced  by the   ac t ion   o f  
v i scos i ty .  

The r e s u l t s   o f  t he  ca lcu la t ions  are compiled in   t he   Tab le ,   fo r   fou r  
different  combinations  of  substances.  In  each  case  the first and last 
rows represent  the  limits o f   r e a l i s t i c   s o l u t i o n s .  The first row may be 
thought  of as t h e  c a s e   o f   i n f i n i t e   v e l o c i t y ,  and t h e  last row represents  
i n f in i t e   r ad ius   o f   cu rva tu re  at t h e  rear s tagnat ion  point .  These r e s u l t s  
are summarized  on Figure 2. 

It w i l l  be   no ted   t ha t   t he   i n f in i t e   r ad ius   o f   cu rva tu re  a t  t h e  back 
of t he   d rop le t ,   s ign i fy ing  a tendency  of  the whole d r o p l e t   t o  become 
f l a t t ened   t he re ,   occu r s  a t  values   of  Weber  number approaching  one which 
i s ,  i n   f a c t ,  the  approximate  experimental limit f o r  a s t ab le   d rop le t .  
( I n  Ref. 1, Weber number i s  4 t imes  the  def ini t ion  here . )   This  i s  cer- 
t a i n l y  a reasonable   feature   of   the   solut ion.  We n o t i c e   t h a t   o v e r   t h e  
range  of   substances  considered  in   the  calculat ions,   the   condi t ions  of  our 
ana lys i s  are met on ly   fo r  Weber numbers greater   than  about  .3. Below t h a t  
value,   separated wakes  would presumably  be  expected. 

Shown a l s o  on t h e  figure are the  experimental   drag  coeff ic ients  
from Fig. 10  of Ref. 1, which, of course,  depend  on the   ac t ion   of  
v i scos i ty .  The poin ts  where these  experimental   curves  cross  the  calcu- 
lated  ones  should  define  the  droplets  having minimum wakes. Figs.  2 and 
4 of Ref. 1 indicate   that   the   photographs showed minimum  wake extent  when 
the   d rag   coef f ic ien t  w a s  a minimum. In a l l  cases  t h e  drag minimum was at 
about W' % 0.8. Thus, the   p resent   ca lcu la t ions  seem t o   p r e d i c t  a minimum 
v a l u e   i n   t h e   r i g h t   r a n g e   o f  Weber number, though t h e  agreement i s  not as 
c lose  as one  might  wish. 
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It i s  important t o  not ice  that the   c i rcu la t ion   wi th in  the droplet  
ca l cu la t ed   i n   t h i s   pape r  i s  very small compared with the   c i r cu la t ion  
t h a t  would charac te r ize  a Hill's vortex. One  may perhaps  conclude  that 
any distortion  of  droplet   shape  from  the  spherical  has a profound  effect 
on the   c i rcu la t ion   wi th in   the   d rople t   t ending   to   suppress  it. One may, 
therefore,   question  whether it is  r e a l i s t i c   t o   u s e  a small per turbat ion 
boundary layer   ana lys i s  as i s  done i n  Refs. 1 and 2 fo r   t heo re t i ca l   s tudy  
o f   v i scous   e f f ec t s   i n   t hese  problems. A boundary layer  study  being 
car r ied   ou t  by Mr. B. Sumner at Cornel l   casts   fur ther   doubt  on t h i s  
assumption,  even i n  the  case of spher ica1 ,drople t s .  

9 
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APPENDIX - SYMBOLS 

An 
a n 
B 

cD 

'n 

n C 

D 

g 

K 

k 

'n 

P 

Coefficients of spherical  harmonics  (eq. 9) 

Dimensionless  coefficients  (eq. 11) 

Bond  number  (eq. 11) 

Drag  coefficient 

Coefficients  (eq. 10) 

Dimensionless  coefficients  (eq. 11) 

Drag  force  on  drop 

Acceleration  due  to  gravity 

Bernoulli  constant  (eq. 6 )  

Constant  related  to  vorticity  (eq. 9 )  

Legendre  polynomials: P =IJ ; P2%( 3u2-1) ; P3d5( 5p2-3v) ; . . . 
Pressure 

1- 

R(0) Spherical  polar  coordinate of surface 

RC 

R 

U 
e 

U 

V 

W 

0 

K 

lJ 

'i 

lJO 

Radius  of  curvature  at  rear  stagnation  point  (eq. 18) 

Equivalent  spherical  drop  radius  (eq. 19) 

Velocity of free  stream 

Radial  velocity  (Fig. 1) 

Velocity  in 0 - direction  (Fig. 1) 
Weber  number  (eq. 11) 

Angle  measured  from  rear  stagnation  point  (Fig. 1) 

Dimensionless  vorticity  (eq. 11) 

cos 0 

Viscosity  of  fluid  inside  drop 

Viscosity of fluid  outside  drop 
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P Density 

a Coeff ic ient  of surface tens ion  

1 Stream  function (eq. 2 )  

Primes: deno te   d i f f e ren t i a t ion   w i th   r e spec t   t o  0,and a l s o   r e d e f i n i t i o n s  
of W and B. 

Subscripts:  
i Inside  drop 
o Outside  drop 
n Order of  spherical  harmonics 
1 A t  rear s tagnat ion  point  (6=0) 
2 A t  shoulder (6=.11/2) 
3 A t  f ront   s tagnat ion   po in t  (6=n ) 
Subscr ip t   occas iona l ly   denotes   par t ia l   d i f fe ren t ia t ion .  
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TABLE 

P, D. 
Water drops in water = 1; - = 1) 1 1 

R - - 3 - Re 
R, R, R, cD B' W' K a 

1 2 3 1 2 3 
a a C C C 

I I I """"""- 

Chlorobenzene in water = 1.107; - = 0.799) 'i 

Do 

""""""- I I I 

1.219 1.000 1.150 0.000 0.539 0.000 -2.975 -0.403 -0.000 -0.181 -0.847 -0.000 0.058 
1.289 1.350 1.260 0.039 0.350 0.592 -2.830 -0.450 0.039 -0.180 -1.046 0.125 0.028 

1.426 1.650 1.418 0.068 0.438 0.825 -2.285 -0.444 0.058 -0.146 -1.474 0.387 -0.031 

1.587 1.900 1.584 0.129 0.641 1.075 -1.687 -0.399 0.063 -0.106 -2.065 0.746 -0.112 

1.778 2.150 1.772  0.240 0.884 1.450 -1.055 -0.305 0.054 -0.064 -2.916 1.260 -0.227 



P2 l J 2  

Nitrobenzene in water (L = 1.199; - - - 2.030) 1 

lJO 

R R 3 e 
R, R, R, 
- - - B' W' cD K a 1 2 3 1 2 3 a a C C C 

I 
" 

I 

1.280 1.000 1.192 0.000 0.581 0.000 -1.889  -0.274 -0.000 -0.112  -0.976 0.000 0.079 
1.321 1.300 1.271 0.052 0.374 0.738 -1.918 -0.313 0.024 -0.120 -1.103 0.086 0.057 
1.408 1.550 1.383 0.071 0.370 1,027 -1.704 -0.320 0.038 -0.108 -1.385 0.265 0.015 

1.573 1.850 1.563 0.128 0.524 1.306 -1.262 -0.292 0.045 -0.079 -1.991 0.644 -0.074 
1.750  2.100  1.741  0.225  0.757  1.582  -0.831  -0.233 0.041 -0.051  -2.768  1.127  -0.185 

m-Nitrotoluene and water 

R2 - R3 - 
R1 R1 - R1 - "- " 

R e B' W' cD K a 1 a 2 &3 C 1 2 3 C C 
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Fig. I Sketch of coordinates 
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0.5 
Weber  number, W' 

1.0 

Fig. 2. Drag vs. Weber  number  for  Water, 
m - Nitrotoluene  (m-N),  Nitrobenzene (N B), and 
chlorobenzene (GB) drops in  water; solid lines 
are present  calculations,  dashed  lines  are 
experimental  results  of  Ref. 1 .  
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